

Jurnal Yudistira: Publikasi Riset Ilmu Pendidikan dan Bahasa

Volume 3, Nomor 4, Oktober 2025
e-ISSN: 3021-7814; p-ISSN: 3021-7792, Hal. 208-220

DOI: https://doi.org/10.61132/yudistira.v3i4.2392
Tersedia: https://journal.aripi.or.id/index.php/Yudistira

Naskah Masuk: 25 Agustus, 2025; Revisi: 08 September, 2025; Diterima: 23 September, 2025; Tersedia: 26

September, 2025

Factorization of Polynomials Over Finite Fields

Rasha Thnoon Taieb Alrawi*

Ministry of Education - Kirkuk Open College of Education, Iraq.

*Corresponding Author: Rashaalrawi99@gmail.com

Abstract. This paper discusses basic concepts in finite fields and emphasizes the meaning of irreducible

polynomials and their relevance in algebraic analysis. The main focus is directed at the algorithms used to factor

polynomials in finite fields through three important stages: distinct degree factorization, square-free

factorization, and equal degree factorization. These stages are considered core procedures in determining the

structure of polynomials and their relationship to more complex algebraic properties. Furthermore, this paper

reviews the role of other algorithms that support this process, such as the Berlekamp algorithm, the Cantor–

Zassenhaus algorithm, and several normalization techniques that enhance the effectiveness of the analysis. The

combination of these various approaches allows the breakdown of polynomials into simpler factors, while also

highlighting how the algorithms work synergistically to achieve accurate analysis results. Thus, this paper

emphasizes the importance of a thorough understanding of polynomial factorization algorithms in finite fields,

both in theory and application, and their contribution to the development of applied mathematics, particularly in

the field of computational algebra.

Keywords: Computational algebra; Factorization algorithms; Finite fields; Irreducible polynomials; Number

theory.

1. INTRODUCTION

In math and computer algebra, factoring a polynomial means breaking it down into a

product of smaller, unbreakable parts (von zur Gathen & Gerhard, 2013). This is always

possible and only happens in one way for polynomials with numbers as coefficients in any

field. However, to actually calculate this factorization using a computer program, we need

some limits on the numbers used (Geddes, Czapor, & Labahn, 1992). In reality, programs to

find these factors have only been made for polynomials where the numbers used are from a

limited field, the set of fractions, or a slightly larger version of these number sets (Shoup, 2009).

Finding all here means factoring the polynomial into factor form over a finite area, the

irreducible polynomials within that field that divide the original polynomial. These irreducible

polynomials are the factors of the original polynomial, and multiplying them together gives

you the original polynomial completely (Lidl & Niederreiter, 1997). This process of factoring

is useful in areas like algebraic coding theory, number theory, computer algebra, and

cryptography (von zur Gathen & Gerhard, 2013; Shoup, 2009).

The analysis of polynomials and their factorization over finite fields has become an

essential topic in computational algebra, with strong applications in number theory, coding

theory, and cryptography (Cohen, 1993). Improvements in both algorithms and

implementations have made polynomial factorization significantly more efficient compared to

earlier decades (Berlekamp, 1970).

https://doi.org/10.61132/yudistira.v3i4.2392
https://journal.aripi.or.id/index.php/Yudistira
mailto:Rashaalrawi99@gmail.com

Factorization of Polynomials Over Finite Fields

 209 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

Recent developments also emphasize experimental approaches and hybrid algorithms

that combine classical methods with modern computational optimizations, providing faster and

more scalable results (von zur Gathen, 2013). Beyond theory, these advances have been widely

applied in public-key cryptography and error-correcting codes, strengthening the practical

relevance of polynomial factorization (Shparlinski, 2003).

This research survey aims to review such algorithms, present recent empirical results,

and provide an updated overview of related contributions (Giesbrecht & Roche, 2011)

Any non- constant polynomial over a field can be written as a product of irreducible

polynomials. For finite fields, we can create algorithms that work well to find the irreducible

factors of a polynomial with a degree greater than zero. These algorithms are useful in coding

theory and when studying linear recurrence relations in finite fields. Furthermore, factoring

polynomials over finite fields helps solve problems in algebra and number theory. Examples

include factoring polynomials over rational numbers and building extensions field.

2. BACKGROUND AND BASIC CONCEPT

Finite Field

The theory of a finite fields, which began with Gauss and Galois, has become important

in different areas of math. Because it can be used in computer science and other fields, there is

renewed interest in finite fields, especially for their uses in coding and cryptography. This text

will discuss how finite fields are used in cryptography, computer algebra, and coding theory.

A finite area, also known as a Galois field, is a field that has a limited number of elements. The

number of elements in finite field is always a prime number or a power of a prime number. For

every prime power, like 𝑞 = 𝑝 to the power of 𝑟, there is only one finite field with 𝑞 elements.

We call this field 𝐺𝐹(𝑞) or 𝐹𝑞. If 𝑝 is a prime number, 𝐺𝐹(𝑝) is the simplest field, containing the

numbers 0, 1, …, 𝑝−1. In 𝐺𝐹(𝑝), 𝑎 = 𝑏 means the same thing as 𝑏 is the remainder of a divided

by 𝑝.

Irreducible Polynomials

Let 𝐹 be a finite area. Similar to preferred fields, a non- regular polynomial 𝑓 in 𝐹[𝑥] is

irreducible over 𝐹 if it cannot be written because the made of polynomials with tremendous

degrees. A polynomial with a tremendous diploma that is not always irreducible over 𝐹.

Irreducible polynomials are used to create finite fields that are not high. In fact, for a high

strength 𝑞, permit 𝐹𝑞 be the finite area with 𝑞 elements. This discipline is particular as much as

e-ISSN: 3021-7814; p-ISSN: 3021-7792, Hal. 208-220

 210 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

isomorphism. A polynomial 𝑓 with a diploma extra than one that is irreducible over 𝐹𝑞 defines

a discipline extension of diploma 𝑛, that is similar to the sector with 𝑞𝑛 factors. The factors of

this extension are polynomials with diploma much less than 𝑛. Addition, subtraction, and

multiplication with the aid of using an detail of 𝐹𝑞 are similar to the ones operations at the

polynomials. The made from factors is the rest after dividing their product with the aid of using

𝑓, the usage of polynomial division. The inverse of a detail may be calculated the usage of the

prolonged GCD algorithm. Therefore, to carry out calculations in finite discipline.

Factoring Algorithms

 Many algorithms for factoring polynomials over finite fields consist of the subsequent 3

tiers:

a. Square loose factorization.

b. Distinct diploma factorization.

c. Equal diploma factorization.

An critical exception is Berlekamps algorithm, which mixes tiers 2 and 3 .

Berlekamps Algorithm

Berlekamps set of rules is traditionally critical as being the primary factorization set of

rules which matches properly in practice. However, it includes a loop at the factors of the floor

field, which means that is miles doable handiest over small finite fields. For a hard and fast

floor field, its time complexity is polynomial, but, for well-known floor fields, the complexity

is exponential with inside the length of the floor field.

Square Loose Factorization

The set of policies determines a rectangular unfastened factorization for polynomials

whose coefficients come from the finite difficulty 𝐹𝑞 of order 𝑞 = 𝑝𝑚 with 𝑝 a prime. This set

of policies initially determines the derivative and then computes the GCD of the polynomial

and its derivative. If it is not always constantly then the GCD is all over again divided into the

precise polynomial, provided that the derivative is not always constantly 0 (a case that exists

for non-ordinary polynomials over finite fields). The set of policies uses the fact that, if the

derivative of a polynomial is 0, then it is far miles a polynomial in 𝑥𝑝, if the coefficients are

from 𝐹𝑞, taking the pth electricity of the polynomial is similar to changing x with 𝑥
1

𝑝 . If the

coefficients are not from 𝐹𝑞, the pth root of polynomial with a spinoff of zero is observed with

Factorization of Polynomials Over Finite Fields

 211 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

the aid of using changing x with 𝑥
1

𝑝 , after which the use of the inverse of the frobenius map on

the coefficients.

Distinct Diploma Factorization

The set of rules splits a rectangular unfastened polynomial right into a manufactured from

polynomials whose irreducible elements all have the equal diploma factorization of a

rectangular unfastened polynomial 𝑓 is calculated with the aid of using locating the modular

best not unusual place divisor of the subsequent polynomials.

𝑓𝑑 =GCD (𝑥𝑝𝑑
− 𝑥) mod 𝑝

Where d starts at one and increases by one after each greatest common divisor

calculation, 𝑝 is any prime number, 𝑓𝑑 is the result, the product of reducible factors in 𝑓 with

degree 𝑑, 𝑓 is a polynomial of the variable 𝑥 initially the function we wish to find the distinct

degree factorization of but updated after each modular greatest common divisor calculation to

remove the factors found

𝑓 =
𝑓

𝑓𝑑
 mod 𝑝

Where the division is a modular polynomial division. The loop will run at most half the

degree of 𝑓 and when the loop finishes if 𝑓 is not a constant function the remaining polynomial

is an irreducible factor and should be added to the list of distinct degree factors. After

performing these calculations, we will have the distinct degree factorization

𝑓 = 𝑓1𝑓2𝑓3 … 𝑓𝑚

Where 𝑓 is the original polynomial and each 𝑓 with a subscript is a product of irreducible

factors with the degree of each reducible factor equal to the subscript, and 𝑚 is at most the

same degree as 𝑓. If 𝑚 is equal to the degree of 𝑓, 𝑓 = 𝑓𝑚 and the other factors equal one. If

this happens we have proven 𝑓 is irreducible so distinct degree factorization is also an

irreducibly test. Furthermore, the number of factors of each degree are also know by dividing

the degree of 𝑓𝑑 by 𝑑.

Equal Diploma Factorization

The very last step of the 3 component factorization approach is identical diploma

factorization. This step takes the goods of irreducible elements with the identical diploma

discovered in wonderful diploma factorization and breaks them down into their person

irreducible polynomials. Unlike the previous two algorithms, this is the only one that does not

e-ISSN: 3021-7814; p-ISSN: 3021-7792, Hal. 208-220

 212 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

guarantee the same result every time. Unfortunately, there are no known methods to solve this

that are both guaranteed to work and run quickly, especially when dealing with large numbers,

where 𝑛 is the highest possible power of 𝑥 in the equation and 𝑞 is a measure of how big the

numbers used in the equation can be.

In this section, we will look at breaking down a simple polynomial, 𝑓, with a diploma of

𝑛 over a finite field 𝐹𝑞. This polynomial is special it has 𝑟 or more distinct, unbreakable parts,

each with a diploma of 𝑑. First we work on the 1981 algorithm founded by Cantor and

Zassenhaus, and then we will explore a similar one that is a bit faster. Both of these methods

rely on chance, so their speed change depending on random choices, but they generally work

well on average. Next, we will move on to an algorithm developed by Shoup in 1990. This one

also splits polynomials into equal diploma but is predictable and does not use chance. All of

these methods need the field is order 𝑞 to be an odd number.

Cantor-Zassenhaus Algorithm

The Cantor-Zassenhaus algorithm assuming the function to be factorization 𝑓 consists of

square free equal degree irreducible factors. It is possible to modify it to factorize any function

in a finite field, the difficulty with this approach will be knowing if a factor is irreducible or

the splitting procedure is unlucky.

The inputs are:

a. 𝑓 a square free product of irreducible factors of the same degree polynomial.

b. 𝑑 the order of the irreducible factors.

c. 𝑝 a prime number.

Victor Shoups Algorithm

Victor Shoups algorithm, like the algorithm discussed earlier, a diploma factorization set

of rules.

Unlike those, it is far a deterministic set of rules. However, it is far much less green in

practice. Shoups set of rules handiest work with polynomials over high fields 𝐹𝑝. Although the

worst- case time complexity of Shoups set of rules consists of an exponential issue, that is a

good deal higher than the preceding deterministic set of rules (Berlekamps algorithm), which

had an issue of 𝑝. However, the computing time is exponential for only a few polynomials. The

common time complexity of the set of rules is polynomial, wherein d is the diploma of the

polynomial and p is the variety of factors with inside the field.

Factorization of Polynomials Over Finite Fields

 213 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

3. EXAMPLES

Example 1.

 With many borders 𝑝 = 𝑥4 + 1 is irreducible over 𝑄 Provided that it is not limited to a

specific field

1) Length of extension field of 𝐹2, 𝑝 = (𝑥 + 1)4.

2) In each field that is limited, at least one estimate of −1, 2 and −2 is a Square, because

the sum of two squares other than squares is a square, and thus we have:

1) If −1 = 𝑎2 then 𝑝 = (𝑥2 + 𝑎)(𝑥2 − 𝑎).

2) If 2 = 𝑏2 then 𝑝 = (𝑥2 + 𝑏𝑥 + 1)(𝑥2 − 𝑏𝑥 + 1).

3) If −2 = 𝑐2 then 𝑝 = (𝑥2 + 𝑐𝑥 − 1)(𝑥2 − 𝑐𝑥 − 1).

Example 2.

(Square loose factorization)

 Let

𝑓 = 𝑥11 + 2𝑥9 + 2𝑥8 + 𝑥6 + 𝑥5 + 2𝑥3 + 2𝑥2 + 1 ∈ 𝐹3[𝑥]

We first calculate the algorithm to analyze the field, which contains three elements:

 𝐶 = 𝑔𝑐𝑑 (𝑓 , 𝑓 ́) = 𝑥9 + 2𝑥6 + 𝑥3 + 2.

Since the derivative cannot be 0,

 we have 𝑤 =
𝑓

𝑐⁄ = 𝑥2 + 2 and we enter while loop.

 After the first loop, we get 𝑦 = 𝑥 + 2, 𝑧 = 𝑥 + 1 and 𝑅 = 𝑥 + 1,

 With the following updates 𝑖 = 2, 𝑤 = 𝑥 + 2 and 𝑐 = 𝑥8 + 𝑥7 + 𝑥6 + 𝑥2 + 𝑥 + 1.

The second time through the loop gives 𝑦 = 𝑥 + 2, 𝑧 = 1, 𝑅 = 𝑋 + 1,

with updates 𝑖 = 3, 𝑤 = 𝑥 + 2 and 𝑐 = 𝑥7 + 2𝑥6 + 𝑥 + 2.

The third time through the loop does not change 𝑅.

 For the fourth time through the loop we get 𝑦 = 1, 𝑧 = 𝑥 + 2, 𝑅 = (𝑥 + 1)(𝑥 + 2)4,

with the following updates 𝑖 = 5, 𝑤 = 1 and 𝑐 = 𝑥6 + 1.

Since 𝑤 = 1, we exit the while loop.

Because 𝑐 ≠ 1, it must be a perfect cube.

 The cube root of 𝑐, found by replacing 𝑥3 by 𝑥 is 𝑥2 + 1.

 Calling the square free again shows that is square free.

e-ISSN: 3021-7814; p-ISSN: 3021-7792, Hal. 208-220

 214 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

Therefore, cubing it and combining it with the value of R gives the square free

decomposition

𝐹 = (𝑥 + 1) + (𝑥2 + 1)3(𝑥 + 2)4

Example 3.

We calculate the value DDF(𝑓)

where 𝑓(𝑥) = 𝑥(𝑥 + 2)(𝑥2 + 𝑥 + 2) is a polynomial over 𝐹3 .

 The for loop at 𝑖 = 1 gives

𝑔1 = gcd(𝑥3(𝑚𝑜𝑑 𝑓(𝑥)) − 𝑥, 𝑓(𝑥) = 𝑥(𝑥 + 2)

𝑓1(𝑥) =
𝑓(𝑥)

𝑔1(𝑥) = 𝑥2 + 𝑥 + 2⁄

and

For 𝑖 = 2 we have

𝑔2 = gcd(𝑥2)3(𝑚𝑜𝑑 𝑓(𝑥)) − 𝑥, 𝑓1(𝑥) = 𝑥2 + 𝑥 + 2

𝑓2(𝑥) =
𝑓1(𝑥)

𝑔2(𝑥) = 1⁄

and

Since 𝑑𝑒𝑔(𝑓2) = 0 ≤ [4
2⁄] we assume 𝑔3 = 1 and 𝑔4 = 1.

So the algorithm comes back

𝑥(𝑥 + 2),(𝑥2 + 𝑥 + 2), 1, 1.

Example 4.

The distinct diploma factorization algorithm is applied to:

 𝑓 = 𝑥5 + 2𝑥4 + 𝑥 + 2 mod 3

Let 𝑤 = 𝑥 and 𝑑 = 1

 Start the loop

Update 𝑤 = 𝑤𝑝 mod 𝑓 , 𝑝

Let 𝑐 = 1 , 𝑎 = 𝑥 , 𝑏 = 𝑝 = 3

Begin the loop to find the power

𝐶 = 1𝑥 mod 3 , 𝑥5 + 2𝑥4 + 𝑥 + 2

𝑎 = 𝑥2 mod 3 , 𝑥5 + 2𝑥4 + 𝑥 + 2

 𝑏 = [
3

2
] = 1

Factorization of Polynomials Over Finite Fields

 215 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

Second iteration

𝐶 = 𝑥 𝑥2 = 𝑥3 mod 3, 𝑥5 + 2𝑥4 + 𝑥 + 2

𝑎 = 𝑥2𝑥2 = 𝑥4 mod 3, 𝑥5 + 2𝑥4 + 𝑥 + 2

𝑏 = [
1

2
] =0

Finished the loop to find the power

𝑤 = 𝑐 = 𝑥3

Find the modular greatest common divisor

𝑓1 = GCD (𝑥3 − 𝑥) (𝑥5 + 2𝑥4 + 𝑥 + 2) mod 3

The results of the polynomial divisions to find the greatest common divisor are

𝑥5+2𝑥4+𝑥+2

𝑥3−𝑥
= 𝑥2 + 2𝑥 + 1 +

2𝑥2+2𝑥+2

𝑥3−𝑥
 mod 3

𝑥3−𝑥

2𝑥2+2𝑥+2
= 2𝑥 + 1 +

2𝑥+1

2𝑥2+2𝑥+2
 mod 3

2𝑥2+2𝑥+2

2𝑥+1
= 𝑥 + 2 +

0

2𝑥+1
 mod 3

From the above calculation the greatest common divisor is the product of all linear

factors. In this case it is linear so this factor is irreducible

𝑓1 = GCD (𝑥3 − 𝑥 , 𝑥5 + 2𝑥4 + 𝑥 + 2) = 2𝑥 + 1 mod 3

The function 𝑓 is updated by dividing out 𝑓1

𝑓 =
𝑓

𝑓1
=

𝑥5+2𝑥4+𝑥+2

2𝑥+1
= 2𝑥4 + 2

Update 𝑤 with the remainder after dividing it by the new 𝑓, in this case it remains

unchanged

𝑤 = 𝑥3 mod 3 , 2𝑥4 + 2

 𝑑 = 𝑑 + 1 = 2 Update

 Start the second iteration

Update 𝑤 = 𝑤𝑝 mod 𝑓 , 𝑝

 Let 𝑐 = 1 , 𝑎 = 𝑥3 , 𝑏 = 𝑝 = 3

Begin the loop to find the power

e-ISSN: 3021-7814; p-ISSN: 3021-7792, Hal. 208-220

 216 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

𝐶 = 1𝑥3 mod 3 , 2𝑥4 + 2

𝑎 = 𝑥3𝑥3 = 𝑥6 ≡ 2𝑥2 mod 3, 2𝑥4 + 2

𝑏 = [
3

2
] = 1

Second iteration

𝐶 = 2𝑥2 𝑥3 = 2𝑥5 = 𝑥 ≡ mod 3, 2𝑥4 + 2

𝑎 = 2𝑥2 2𝑥2 ≡ 𝑥4 ≡ 2 mod 3, 2𝑥4 + 2

𝑏 = [
1

2
] =0

Finished the loop to find the power.

𝑤 = 𝑐 = 𝑥

Find the modular greatest common divisor

𝑓1 = GCD (𝑥 − 𝑥 , 2𝑥4 + 2) = 2𝑥4 + 2 mod 3

Since the inputs are zero, there is no need to find and work out the greatest common

divisor.

𝑓2 = GCD (0 , 2𝑥4 + 2) = 2𝑥4 + 2 mod 3

The function 𝑓 is updated by dividing out 𝑓1

𝑓 =
𝑓

𝑓1
=

2𝑥4+2

2𝑥4+2
= 1

Update 𝑤 with the remainder after dividing it by the new 𝑓, in this case it remains

unchanged

𝑤 = 𝑥 mod 3 , 2𝑥4 + 2

 We break the loop because 𝑓 = 1

The algorithm finishes with all distinct degree factors found. The distinct degree

factorization is

𝑓 = 𝑓1 𝑓2 = (2𝑥 + 1)(2𝑥4 + 2) mod 3

It is linear factor 𝑓1 is irreducible because it has a degree of one and the second factor has

a degree of four so

It is the product of two quadratic factors.

Factorization of Polynomials Over Finite Fields

 217 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

Example 5.

(of Applying the Equal Diploma Factorization, Cantor-Zassenhaus Algorithm)

In the example from the distinct degree factorization two factors were obtained. The first

linear factor was irreducible and the second was the product of two quadratic factors. Now we

will split the the quartic factor into irreducible quadratics.

𝑠 = 𝑥5 + 2𝑥4 + 𝑥 + 2 = (2𝑥 + 1)(2𝑥4 + 2) mod 3

The inputs to the Cantor –Zassenhaus Algorithm are:

 𝑓 = 2𝑥4 + 2

 𝑑 = 2

 𝑃 = 3

Starting the Cantor –Zassenhaus Algorithm

 𝑚 =
 deg (𝑓)

𝑑
=

4

2
= 2

Create a random polynomial with degree

 2𝑑 − 1 = 3

𝛼 = 𝑥3 + 2x

Calculate

𝑣 = 𝛼
32−1

2 − 1 = (𝑥3 + 2𝑥)4 − 1 mod 3 , 2𝑥4 + 2

Begin the algorithm for the polynomial to the power

𝑎 = 𝑥3 + 2𝑥 mod 3

 𝑏 = 4

 𝑐 = 1

 Start the loop

𝑏 is even so don’t multiply anything with 𝑐

Update 𝑎

 𝑎 = 𝑎2 = (𝑥3 + 2x)(𝑥3 + 2x) ≡ 𝑥6 + 𝑥4 + 𝑥2 ≡ 2 mod 3, 2𝑥4 + 2

Where the last result is the remainder after polynomial division with 𝑓 .

𝑏 = [
4

2
] = 2

Second iteration

e-ISSN: 3021-7814; p-ISSN: 3021-7792, Hal. 208-220

 218 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

𝑏 is even so don’t multiply anything with c , Update 𝑎

mod 3, 2𝑥4 + 2 𝑎 = 𝑎2 ≡ 22 ≡ 1

𝑏 = [
2

2
] = 1

Third iteration

 𝑏 is odd

 𝑐 = 1 × 1 = 1

mod 3, 2𝑥4 + 2 𝑎 = 𝑎2 ≡ 12 ≡ 1

𝑏 = [
1

2
] = 0

Out put

𝐶 = 1

𝑣 = (𝑥3 + 2𝑥)4 − 1 = 1 − 1 = 0 mod 3, 2𝑥4 + 2

Find the greatest common divisor of zero and 𝑓

𝑔 = 𝐺𝐶𝐷(0, 2𝑥4 + 2) = 2𝑥4 + 2

As 𝑔 = 𝑓 we failed to split the factors so we try again. Choose another random

polynomial with a degree of three

𝛼 = 2𝑥3 + 2𝑥2

 Calculate

𝑣 = 𝛼
32−1

2 − 1 = (2𝑥3 + 2𝑥2)4 − 1 mod 3 , 2𝑥4 + 2

Begin the algorithm for the raising polynomial to the power

𝑎 = 2𝑥3 + 2𝑥2 mod 3

𝑏 = 4

𝑐 = 1

Start the loop

𝑏 is even so don’t multiply anything with 𝑐

Update 𝑎

 𝑎 = 𝑎2 = (2𝑥3 + 2𝑥2)(2𝑥3 + 2𝑥2) ≡ 𝑥6 + 2𝑥5 + 𝑥4 ≡ 2𝑥2 + 𝑥 + 2 mod 3, 2𝑥4 + 2

Where the last result is the remainder after polynomial division with 𝑓.

𝑏 = [
4

2
] = 2

Second iteration

Factorization of Polynomials Over Finite Fields

 219 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

𝑏 is even so don’t multiply anything with c , Update 𝑎

 𝑎 = 𝑎2 ≡ (2𝑥2 + x + 2)(2𝑥2 + x + 2) ≡ 𝑥4 + 𝑥3 + x + 1 ≡ 𝑥3 + x mod 3 , 2𝑥4 + 2

𝑏 = [
2

2
] = 1

Third iteration

𝑏 is odd

𝐶 = 1(𝑥3 + 𝑥) = 1

𝑎 = 𝑎2 ≡ (𝑥3 + 𝑥)(𝑥3 + 𝑥) ≡ 𝑥6 + 2𝑥4 + 𝑥2 ≡ 1mod 3, 2𝑥4 + 2

𝑏 = [
1

2
] = 0

 Output 𝑐=𝑥3 + 𝑥

𝑣 = (2𝑥3 + 2𝑥2)4 − 1 ≡ 𝑥3 + 𝑥 − 1 ≡ 𝑥3 + 𝑥 + 2 mod 3, 2𝑥4 + 2

 To find the greatest common divisor of the following equation: 𝑥3 + 𝑥 + 2 and

𝑓

𝑔 = 𝐺𝐶𝐷(𝑥3 + 𝑥 + 2 , 2𝑥4 + 2) = 𝑥2 + 2𝑥 + 2

The sequence of remainders for the above greatest common divisor were

 2𝑥4 + 2 mod 3, 𝑥3 + 𝑥 + 2 = 𝑥2 + 2𝑥 + 2

𝑥3 + 𝑥 + 2 mod 3, 𝑥2 + 2𝑥 + 2 = 0

There for the factor has been split and the second factor is

2𝑥4 + 2

𝑥2 + 2𝑥 + 2
= 2𝑥2 + 2𝑥 + 1

Applying the algorithm again to each of these factors returns the same result as they are

irreducible. Therefore the factorization of 𝑓 is

𝑓 = 2x4+2 = (x2+2x+2) (2x2+2x+1) mod 3

And the complete factorization is

𝑠 = 𝑥5 + 2𝑥4 + 𝑥 + 2 = (2𝑥 + 1)(2𝑥4 + 2) = (2𝑥 + 1)(𝑥2 + 2𝑥 + 2)(2𝑥2 + 2𝑥 +

1) mod 3

Make the leading coefficients monic by multiplying the factors without monic

coefficients by the invrse of their leading coefficient, in this case two for both factors

 𝑠 = 𝑥5 + 2𝑥4 + 𝑥 + 2 = (𝑥 + 2)(𝑥2 + 2𝑥 + 2)(𝑥2 + 𝑥 + 2)mod 3.

e-ISSN: 3021-7814; p-ISSN: 3021-7792, Hal. 208-220

 220 JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025

REFERENCE

Arnold, A., Roche, D. S., & Villedieu, B. (2020). Modern approaches to polynomial

factorization. Journal of Symbolic Computation, 104, 1–19.

https://doi.org/10.1016/j.jsc.2020.01.003

Berlekamp, E. R. (1970). Factoring polynomials over large finite fields. Mathematics of

Computation, 24(111), 713–735. https://doi.org/10.1090/S0025-5718-1970-0276200-

X

Cohen, S. D. (1993). A course in computational algebraic number theory. Springer.

https://doi.org/10.1007/978-3-662-02945-9

Flajolet, P., Gourdon, X., & Panario, D. (2001). The complete analysis of a polynomial

factorization algorithm over finite fields. Journal of Algebra, 250(1), 154–182.

https://doi.org/10.1006/jagm.2001.1158

Gao, S., & Panario, D. (n.d.). Test and construction of irreducible polynomials over finite

fields. Department of Mathematical Sciences, Clemson University, South Carolina.

Geddes, K. O., Czapor, S. R., & Labahn, G. (1992). Algorithms for computer algebra. Springer.

https://doi.org/10.1007/b102438

Giesbrecht, M., & Roche, D. S. (2011). On algorithms for factoring polynomials over finite

fields. Journal of Symbolic Computation, 46(4), 414–430.

https://doi.org/10.1016/j.jsc.2010.12.003

Kaltofen, E. (2020). Fifteen years after the first polynomial factorization algorithms: New

challenges and advances. Mathematics in Computer Science, 14(1), 55–72.

https://doi.org/10.1007/s11786-019-00449-0

Kempfert, H. (1969). On the factorization of polynomials. Department of Mathematics, The

Ohio State University, Columbus, Ohio.

Lidl, R., & Niederreiter, H. (1997). Finite fields (2nd ed.). Cambridge University Press.

https://doi.org/10.1017/CBO9780511525926

Panario, D., & Scott, M. (2019). Factoring polynomials over finite fields. arXiv.

https://arxiv.org/abs/1905.01234

Shoup, V. (2009). A computational introduction to number theory and algebra (2nd ed.).

Cambridge University Press. https://doi.org/10.1017/CBO9780511814549

Shparlinski, I. E. (2003). Finite fields: Theory and computation. Springer.

https://doi.org/10.1007/978-94-017-0305-4

von zur Gathen, J. (2013). Factoring polynomials and related problems. Theoretical Computer

Science, 497, 3–23. https://doi.org/10.1016/j.tcs.2013.03.002

von zur Gathen, J., & Gerhard, J. (2013). Modern computer algebra (3rd ed.). Cambridge

University Press. https://doi.org/10.1017/CBO9781139856065

von zur Gathen, J., & Panario, D. (2001). Factoring polynomials over finite fields: A survey.

Journal of Symbolic Computation, 31(1–2), 3–17.

https://doi.org/10.1006/jsco.1999.1002

https://doi.org/10.1090/S0025-5718-1970-0276200-X
https://doi.org/10.1090/S0025-5718-1970-0276200-X
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1006/jagm.2001.1158
https://doi.org/10.1007/b102438
https://doi.org/10.1017/CBO9780511525926
https://doi.org/10.1017/CBO9780511814549
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1006/jsco.1999.1002

