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Abstract. This paper discusses basic concepts in finite fields and emphasizes the meaning of irreducible 

polynomials and their relevance in algebraic analysis. The main focus is directed at the algorithms used to factor 

polynomials in finite fields through three important stages: distinct degree factorization, square-free 

factorization, and equal degree factorization. These stages are considered core procedures in determining the 

structure of polynomials and their relationship to more complex algebraic properties. Furthermore, this paper 

reviews the role of other algorithms that support this process, such as the Berlekamp algorithm, the Cantor–

Zassenhaus algorithm, and several normalization techniques that enhance the effectiveness of the analysis. The 

combination of these various approaches allows the breakdown of polynomials into simpler factors, while also 

highlighting how the algorithms work synergistically to achieve accurate analysis results. Thus, this paper 

emphasizes the importance of a thorough understanding of polynomial factorization algorithms in finite fields, 

both in theory and application, and their contribution to the development of applied mathematics, particularly in 

the field of computational algebra.  

 

Keywords: Computational algebra; Factorization algorithms; Finite fields; Irreducible polynomials; Number 

theory. 

 

1. INTRODUCTION  

In math and computer algebra, factoring a polynomial means breaking it down into a 

product of smaller, unbreakable parts (von zur Gathen & Gerhard, 2013). This is always 

possible and only happens in one way for polynomials with numbers as coefficients in any 

field. However, to actually calculate this factorization using a computer program, we need 

some limits on the numbers used (Geddes, Czapor, & Labahn, 1992). In reality, programs to 

find these factors have only been made for polynomials where the numbers used are from a 

limited field, the set of fractions, or a slightly larger version of these number sets (Shoup, 2009). 

Finding all here means factoring the polynomial into factor form over a finite area, the 

irreducible polynomials within that field that divide the original polynomial. These irreducible 

polynomials are the factors of the original polynomial, and multiplying them together gives 

you the original polynomial completely (Lidl & Niederreiter, 1997). This process of factoring 

is useful in areas like algebraic coding theory, number theory, computer algebra, and 

cryptography (von zur Gathen & Gerhard, 2013; Shoup, 2009). 

The analysis of polynomials and their factorization over finite fields has become an 

essential topic in computational algebra, with strong applications in number theory, coding 

theory, and cryptography (Cohen, 1993). Improvements in both algorithms and 

implementations have made polynomial factorization significantly more efficient compared to 

earlier decades (Berlekamp, 1970). 
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Recent developments also emphasize experimental approaches and hybrid algorithms 

that combine classical methods with modern computational optimizations, providing faster and 

more scalable results (von zur Gathen, 2013). Beyond theory, these advances have been widely 

applied in public-key cryptography and error-correcting codes, strengthening the practical 

relevance of polynomial factorization (Shparlinski, 2003). 

This research survey aims to review such algorithms, present recent empirical results, 

and provide an updated overview of related contributions (Giesbrecht & Roche, 2011) 

Any non- constant polynomial over a field can be written as a product of irreducible 

polynomials. For finite fields, we can create algorithms that work well to find the irreducible 

factors of a polynomial with a degree greater than zero. These algorithms are useful in coding 

theory and when studying linear recurrence relations in finite fields. Furthermore, factoring 

polynomials over finite fields helps solve problems in algebra and number theory. Examples 

include factoring polynomials over rational numbers and building extensions field.  

 

2. BACKGROUND AND BASIC CONCEPT 

Finite Field 

The theory of a finite fields, which began with Gauss and Galois, has become important 

in different areas of math. Because it can be used in computer science and other fields, there is 

renewed interest in finite fields, especially for their uses in coding and cryptography. This text 

will discuss how finite fields are used in cryptography, computer algebra, and coding theory. 

A finite area, also known as a Galois field, is a field that has a limited number of elements. The 

number of elements in finite field is always a prime number or a power of a prime number. For 

every prime power, like 𝑞 = 𝑝 to the power of 𝑟, there is only one finite field with 𝑞 elements. 

We call this field 𝐺𝐹(𝑞) or 𝐹𝑞. If 𝑝 is a prime number, 𝐺𝐹(𝑝) is the simplest field, containing the 

numbers 0, 1, …, 𝑝−1. In 𝐺𝐹(𝑝), 𝑎 = 𝑏 means the same thing as 𝑏 is the remainder of a divided 

by 𝑝. 

 

Irreducible Polynomials 

Let 𝐹 be a finite area. Similar to preferred fields, a non- regular polynomial 𝑓 in 𝐹[𝑥] is 

irreducible over 𝐹 if it cannot be written because the made of polynomials with tremendous 

degrees. A polynomial with a tremendous diploma that is not always irreducible over 𝐹. 

Irreducible polynomials are used to create finite fields that are not high. In fact, for a high 

strength 𝑞, permit 𝐹𝑞 be the finite area with 𝑞 elements. This discipline is particular as much as 
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isomorphism. A polynomial 𝑓 with a diploma extra than one that is irreducible over 𝐹𝑞 defines 

a discipline extension of diploma 𝑛, that is similar to the sector with 𝑞𝑛 factors. The factors of 

this extension are polynomials with diploma much less than 𝑛. Addition, subtraction, and 

multiplication with the aid of using an detail of 𝐹𝑞 are similar to the ones operations at the 

polynomials. The made from factors is the rest after dividing their product with the aid of using 

𝑓, the usage of polynomial division. The inverse of a detail may be calculated the usage of the 

prolonged GCD algorithm. Therefore, to carry out calculations in finite discipline. 

 

Factoring Algorithms 

 Many algorithms for factoring polynomials over finite fields consist of the subsequent 3 

tiers: 

a. Square loose factorization. 

b. Distinct diploma factorization. 

c. Equal diploma factorization. 

An critical exception is Berlekamps algorithm, which mixes tiers 2 and 3 .  

 

Berlekamps Algorithm 

Berlekamps set of rules is traditionally critical as being the primary factorization set of 

rules which matches properly in practice. However, it includes a loop at the factors of the floor 

field, which means that is miles doable handiest over small finite fields. For a hard and fast 

floor field, its time complexity is polynomial, but, for well-known floor fields, the complexity 

is exponential with inside the length of the floor field. 

 

Square Loose Factorization 

The set of policies determines a rectangular unfastened factorization for polynomials 

whose coefficients come from the finite difficulty 𝐹𝑞 of order 𝑞 = 𝑝𝑚 with 𝑝 a prime. This set 

of policies initially determines the derivative and then computes the GCD of the polynomial 

and its derivative. If it is not always constantly then the GCD is all over again divided into the 

precise polynomial, provided that the derivative is not always constantly 0 ( a case that exists 

for non-ordinary polynomials over finite fields). The set of policies uses the fact that, if the 

derivative of a polynomial is 0, then it is far miles a polynomial in 𝑥𝑝, if the coefficients are 

from 𝐹𝑞, taking the pth electricity of the polynomial is similar to changing x with 𝑥
1

𝑝 . If the 

coefficients are not from 𝐹𝑞, the pth root of polynomial with a spinoff of zero is observed with 
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the aid of using changing x with 𝑥
1

𝑝 , after which the use of the inverse of the frobenius map on 

the coefficients. 

 

Distinct Diploma Factorization 

The set of rules splits a rectangular unfastened polynomial right into a manufactured from 

polynomials whose irreducible elements all have the equal diploma factorization of a 

rectangular unfastened polynomial 𝑓 is calculated with the aid of using locating the modular 

best not unusual place divisor of the subsequent polynomials.  

𝑓𝑑 =GCD (𝑥𝑝𝑑
− 𝑥) mod 𝑝 

Where d starts at one and increases by one after each greatest common divisor 

calculation, 𝑝 is any prime number, 𝑓𝑑 is the result, the product of reducible factors in 𝑓 with 

degree 𝑑, 𝑓 is a polynomial of the variable 𝑥 initially the function we wish to find the distinct 

degree factorization of but updated after each modular greatest common divisor calculation to 

remove the factors found 

𝑓 =
𝑓

𝑓𝑑
 mod 𝑝 

Where the division is a modular polynomial division. The loop will run at most half the 

degree of 𝑓 and when the loop finishes if 𝑓 is not a constant function the remaining polynomial 

is an irreducible factor and should be added to the list of distinct degree factors. After 

performing these calculations, we will have the distinct degree factorization 

𝑓 = 𝑓1𝑓2𝑓3 … 𝑓𝑚 

Where 𝑓 is the original polynomial and each 𝑓 with a subscript is a product of irreducible 

factors with the degree of each reducible factor equal to the subscript, and 𝑚 is at most the 

same degree as 𝑓. If 𝑚 is equal to the degree of 𝑓, 𝑓 = 𝑓𝑚 and the other factors equal one. If 

this happens we have proven 𝑓 is irreducible so distinct degree factorization is also an 

irreducibly test. Furthermore, the number of factors of each degree are also know by dividing 

the degree of 𝑓𝑑 by 𝑑. 

 

Equal Diploma Factorization 

The very last step of the 3 component factorization approach is identical diploma 

factorization. This step takes the goods of irreducible elements with the identical diploma 

discovered in wonderful diploma factorization and breaks them down into their person 

irreducible polynomials. Unlike the previous two algorithms, this is the only one that does not 
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guarantee the same result every time. Unfortunately, there are no known methods to solve this 

that are both guaranteed to work and run quickly, especially when dealing with large numbers, 

where 𝑛 is the highest possible power of 𝑥 in the equation and 𝑞 is a measure of how big the 

numbers used in the equation can be. 

In this section, we will look at breaking down a simple polynomial, 𝑓, with a diploma of 

𝑛 over a finite field 𝐹𝑞. This polynomial is special it has 𝑟 or more distinct, unbreakable parts, 

each with a diploma of 𝑑. First we work on the 1981 algorithm founded by Cantor and 

Zassenhaus, and then we will explore a similar one that is a bit faster. Both of these methods 

rely on chance, so their speed change depending on random choices, but they generally work 

well on average. Next, we will move on to an algorithm developed by Shoup in 1990. This one 

also splits polynomials into equal diploma but is predictable and does not use chance. All of 

these methods need the field is order 𝑞 to be an odd number. 

 

Cantor-Zassenhaus Algorithm 

The Cantor-Zassenhaus algorithm assuming the function to be factorization 𝑓 consists of 

square free equal degree irreducible factors. It is possible to modify it to factorize any function 

in a finite field, the difficulty with this approach will be knowing if a factor is irreducible or 

the splitting procedure is unlucky. 

The inputs are:  

a. 𝑓 a square free product of irreducible factors of the same degree polynomial. 

b. 𝑑 the order of the irreducible factors. 

c. 𝑝 a prime number. 

 

Victor Shoups Algorithm 

Victor Shoups algorithm, like the algorithm discussed earlier, a diploma factorization set 

of rules. 

Unlike those, it is far a deterministic set of rules. However, it is far much less green in 

practice. Shoups set of rules handiest work with polynomials over high fields 𝐹𝑝. Although the 

worst- case time complexity of Shoups set of rules consists of an exponential issue, that is a 

good deal higher than the preceding deterministic set of rules (Berlekamps algorithm), which 

had an issue of 𝑝. However, the computing time is exponential for only a few polynomials. The 

common time complexity of the set of rules is polynomial, wherein d is the diploma of the 

polynomial and p is the variety of factors with inside the field. 
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3. EXAMPLES 

Example 1. 

 With many borders  𝑝 = 𝑥4 + 1 is irreducible over 𝑄 Provided that it is not limited to a 

specific field 

1) Length of extension field of 𝐹2, 𝑝 = (𝑥 + 1)4. 

2) In each field that is limited, at least one estimate of  −1, 2 and −2 is a Square, because 

the sum of two squares other than squares is a square, and thus we have: 

1) If −1 = 𝑎2  then 𝑝 = (𝑥2 + 𝑎)(𝑥2 − 𝑎). 

2) If 2 = 𝑏2  then 𝑝 = ( 𝑥2 + 𝑏𝑥 + 1)(𝑥2 − 𝑏𝑥 + 1). 

3) If −2 = 𝑐2 then 𝑝 = ( 𝑥2 + 𝑐𝑥 − 1)(𝑥2 − 𝑐𝑥 − 1). 

 

Example 2.  

(Square loose factorization) 

 Let 

𝑓 = 𝑥11 + 2𝑥9 + 2𝑥8 + 𝑥6 + 𝑥5 + 2𝑥3 + 2𝑥2 + 1 ∈  𝐹3[𝑥]  

 

We first calculate the algorithm to analyze the field, which contains three elements:  

 

  𝐶 =  𝑔𝑐𝑑 ( 𝑓 , 𝑓 ́)  =  𝑥9 + 2𝑥6 + 𝑥3 + 2. 

Since the derivative cannot be 0, 

 we have 𝑤 =
𝑓

𝑐⁄ = 𝑥2 + 2 and we enter while loop. 

 After the first loop, we get 𝑦 = 𝑥 + 2, 𝑧 = 𝑥 + 1 and 𝑅 = 𝑥 + 1, 

 With the following updates 𝑖 = 2, 𝑤 = 𝑥 + 2 and 𝑐 = 𝑥8 + 𝑥7 + 𝑥6 + 𝑥2 + 𝑥 + 1.  

The second time through the loop gives 𝑦 = 𝑥 + 2, 𝑧 = 1, 𝑅 = 𝑋 + 1,  

with updates 𝑖 = 3, 𝑤 = 𝑥 + 2 and 𝑐 = 𝑥7 + 2𝑥6 + 𝑥 + 2.  

The third time through the loop does not change 𝑅. 

 For the fourth time through the loop we get 𝑦 = 1, 𝑧 = 𝑥 + 2, 𝑅 = (𝑥 + 1)(𝑥 + 2)4,  

with the following updates 𝑖 = 5, 𝑤 = 1 and 𝑐 = 𝑥6 + 1.  

Since 𝑤 = 1, we exit the while loop.  

Because 𝑐 ≠ 1, it must be a perfect cube. 

 The cube root of 𝑐, found by replacing 𝑥3 by 𝑥 is 𝑥2 + 1. 

 Calling the square free again shows that is square free.  
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Therefore, cubing it and combining it with the value of R gives the square free 

decomposition  

𝐹 = (𝑥 + 1) + (𝑥2 + 1)3(𝑥 + 2)4 

 

Example 3. 

We calculate the value DDF(𝑓)  

where 𝑓(𝑥) = 𝑥(𝑥 + 2)(𝑥2 + 𝑥 + 2) is a polynomial over 𝐹3 . 

 The for loop at 𝑖 = 1 gives 

𝑔1 = gcd(𝑥3( 𝑚𝑜𝑑 𝑓(𝑥)) − 𝑥, 𝑓(𝑥) = 𝑥(𝑥 + 2)  

 

𝑓1(𝑥) =
𝑓(𝑥)

𝑔1(𝑥) = 𝑥2 + 𝑥 + 2⁄  

and 

For 𝑖 = 2 we have 

𝑔2 = gcd(𝑥2)3(𝑚𝑜𝑑 𝑓(𝑥)) − 𝑥, 𝑓1(𝑥) = 𝑥2 + 𝑥 + 2 

𝑓2(𝑥) =
𝑓1(𝑥)

𝑔2(𝑥) = 1⁄  

and 

Since 𝑑𝑒𝑔(𝑓2) = 0 ≤ [4
2⁄ ] we assume 𝑔3 = 1 and 𝑔4 = 1. 

So the algorithm comes back 

𝑥(𝑥 + 2),( 𝑥2 + 𝑥 + 2), 1, 1. 

 

Example 4. 

The distinct diploma factorization algorithm is applied to: 

         𝑓 =  𝑥5 + 2𝑥4 + 𝑥 + 2 mod 3  

Let 𝑤 =  𝑥 and 𝑑 = 1 

  Start the loop 

Update 𝑤 =  𝑤𝑝 mod 𝑓 , 𝑝 

Let 𝑐 = 1 , 𝑎 =  𝑥 , 𝑏 = 𝑝 = 3 

Begin the loop to find the power 

𝐶 = 1𝑥 mod 3 , 𝑥5 + 2𝑥4 + 𝑥 + 2 

𝑎 = 𝑥2 mod 3 , 𝑥5 + 2𝑥4 + 𝑥 + 2 

 𝑏 = [
3

2
] = 1 
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Second iteration 

𝐶 =  𝑥 𝑥2 = 𝑥3 mod 3, 𝑥5 + 2𝑥4 + 𝑥 + 2 

𝑎 = 𝑥2𝑥2 = 𝑥4 mod 3, 𝑥5 + 2𝑥4 + 𝑥 + 2 

 

𝑏 = [
1

2
] =0 

Finished the loop to find the power 

𝑤 = 𝑐 = 𝑥3 

Find the modular greatest common divisor 

𝑓1 = GCD (𝑥3 − 𝑥) (𝑥5 + 2𝑥4 + 𝑥 + 2) mod 3 

The results of the polynomial divisions to find the greatest common divisor are 

 

     
𝑥5+2𝑥4+𝑥+2

𝑥3−𝑥
= 𝑥2 + 2𝑥 + 1 +

2𝑥2+2𝑥+2

𝑥3−𝑥
   mod 3 

 

𝑥3−𝑥

2𝑥2+2𝑥+2
= 2𝑥 + 1 +

2𝑥+1

2𝑥2+2𝑥+2
    mod 3 

 

2𝑥2+2𝑥+2

2𝑥+1
= 𝑥 + 2 +

0

2𝑥+1
 mod 3  

 

From the above calculation the greatest common divisor is the product of all linear 

factors. In this case it is linear so this factor is irreducible 

𝑓1 = GCD (𝑥3 − 𝑥 , 𝑥5 + 2𝑥4 + 𝑥 + 2) = 2𝑥 + 1 mod 3 

The function 𝑓 is updated by dividing out 𝑓1 

𝑓 =
𝑓

𝑓1
= 

𝑥5+2𝑥4+𝑥+2

2𝑥+1
= 2𝑥4 + 2  

Update 𝑤 with the remainder after dividing it by the new 𝑓, in this case it remains 

unchanged 

𝑤 =  𝑥3 mod 3 , 2𝑥4 + 2 

  𝑑 = 𝑑 + 1 = 2  Update  

 

 Start the second iteration  

Update 𝑤 =  𝑤𝑝 mod 𝑓 , 𝑝 

  Let 𝑐 = 1 , 𝑎 =  𝑥3 , 𝑏 = 𝑝 = 3 

Begin the loop to find the power 
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𝐶 = 1𝑥3 mod 3 , 2𝑥4 + 2 

𝑎 = 𝑥3𝑥3 = 𝑥6 ≡ 2𝑥2 mod 3, 2𝑥4 + 2 

𝑏 = [
3

2
] = 1 

Second iteration 

𝐶 =  2𝑥2 𝑥3 = 2𝑥5 = 𝑥 ≡ mod 3, 2𝑥4 + 2 

𝑎 = 2𝑥2 2𝑥2 ≡ 𝑥4 ≡ 2 mod 3, 2𝑥4 + 2 

𝑏 = [
1

2
] =0 

Finished the loop to find the power. 

𝑤 = 𝑐 = 𝑥  

Find the modular greatest common divisor 

𝑓1 = GCD (𝑥 − 𝑥 , 2𝑥4 + 2) = 2𝑥4 + 2 mod 3 

Since the inputs are zero, there is no need to find and work out the greatest common 

divisor. 

𝑓2 = GCD ( 0 , 2𝑥4 + 2) = 2𝑥4 + 2 mod 3 

The function 𝑓 is updated by dividing out 𝑓1 

 

𝑓 =
𝑓

𝑓1
= 

2𝑥4+2

2𝑥4+2
= 1 

Update 𝑤 with the remainder after dividing it by the new 𝑓, in this case it remains 

unchanged 

𝑤 =  𝑥 mod 3 , 2𝑥4 + 2 

   We break the loop because 𝑓 = 1 

The algorithm finishes with all distinct degree factors found. The distinct degree 

factorization is     

𝑓 = 𝑓1 𝑓2 = (2𝑥 + 1)(2𝑥4 + 2) mod 3              

It is linear factor 𝑓1 is irreducible because it has a degree of one and the second factor has 

a degree of four so  

It is the product of two quadratic factors.  

 

 

 

 

 



 

 

 

Factorization of Polynomials Over Finite Fields 
 

 

 217      JURNAL YUDISTIRA - VOLUME 3, NOMOR 4, OKTOBER 2025  

 

 

Example 5. 

(of Applying the Equal Diploma Factorization, Cantor-Zassenhaus Algorithm) 

In the example from the distinct degree factorization two factors were obtained. The first 

linear factor was irreducible and the second was the product of two quadratic factors. Now we 

will split the the quartic factor into irreducible quadratics. 

𝑠 =  𝑥5 + 2𝑥4 + 𝑥 + 2 = (2𝑥 + 1)(2𝑥4 + 2) mod 3 

The inputs to the Cantor –Zassenhaus Algorithm are: 

  𝑓 =  2𝑥4 + 2 

  𝑑 = 2 

 𝑃 = 3 

Starting the Cantor –Zassenhaus Algorithm               

             

  𝑚 =
 deg (𝑓)

𝑑
=  

4

2
= 2 

Create a random polynomial with degree  

  2𝑑 − 1 = 3               

𝛼 = 𝑥3 + 2x             

 

Calculate                      

𝑣 = 𝛼
32−1

2 − 1 = (𝑥3 + 2𝑥)4 − 1 mod 3 , 2𝑥4 + 2         

Begin the algorithm for the polynomial to the power             

  

𝑎 = 𝑥3 + 2𝑥 mod 3              

 𝑏 = 4 

   𝑐 = 1                

 Start the loop              

𝑏 is even so don’t multiply anything with 𝑐 

 

Update 𝑎 

  𝑎 = 𝑎2 = (𝑥3 + 2x)(𝑥3 + 2x) ≡ 𝑥6 + 𝑥4 + 𝑥2 ≡ 2 mod 3, 2𝑥4 + 2        

Where the last result is the remainder after polynomial division with 𝑓 . 

𝑏 = [
4

2
] = 2 

Second iteration 
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𝑏 is even so don’t multiply anything with c , Update 𝑎 

mod 3, 2𝑥4 + 2  𝑎 = 𝑎2 ≡ 22 ≡ 1  

𝑏 = [
2

2
] = 1 

Third iteration   

   𝑏 is odd     

  𝑐 = 1 × 1 = 1   

mod 3, 2𝑥4 + 2  𝑎 = 𝑎2 ≡ 12 ≡ 1 

𝑏 = [
1

2
] = 0 

Out put  

𝐶 = 1  

𝑣 = (𝑥3 + 2𝑥)4 − 1 = 1 − 1 = 0 mod 3, 2𝑥4 + 2  

Find the greatest common divisor of zero and 𝑓  

𝑔 = 𝐺𝐶𝐷( 0, 2𝑥4 + 2) = 2𝑥4 + 2         

As 𝑔 = 𝑓 we failed to split the factors so we try again. Choose another random 

polynomial with a degree of three 

𝛼 = 2𝑥3 + 2𝑥2                     

 Calculate                    

𝑣 = 𝛼
32−1

2 − 1 = (2𝑥3 + 2𝑥2)4 − 1 mod 3 , 2𝑥4 + 2             

       

Begin the algorithm for the raising polynomial to the power            

 

 

𝑎 = 2𝑥3 + 2𝑥2 mod 3       

𝑏 =  4 

𝑐 = 1  

Start the loop 

𝑏 is even so don’t multiply anything with 𝑐  

Update 𝑎 

 𝑎 = 𝑎2 = (2𝑥3 + 2𝑥2)(2𝑥3 + 2𝑥2) ≡ 𝑥6 + 2𝑥5 + 𝑥4 ≡ 2𝑥2 + 𝑥 + 2 mod 3, 2𝑥4 + 2 

Where the last result is the remainder after polynomial division with 𝑓. 

𝑏 = [
4

2
] = 2 

Second iteration 
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𝑏 is even so don’t multiply anything with c , Update 𝑎 

 𝑎 = 𝑎2 ≡ (2𝑥2 + x + 2)(2𝑥2 + x + 2) ≡ 𝑥4 + 𝑥3 + x + 1 ≡ 𝑥3 + x mod 3 , 2𝑥4 + 2     

𝑏 = [
2

2
] = 1   

Third iteration 

𝑏 is odd 

𝐶 = 1(𝑥3 + 𝑥) = 1  

𝑎 = 𝑎2 ≡ (𝑥3 + 𝑥)(𝑥3 + 𝑥) ≡ 𝑥6 + 2𝑥4 + 𝑥2 ≡ 1mod 3, 2𝑥4 + 2 

𝑏 = [
1

2
] = 0 

     Output 𝑐=𝑥3 + 𝑥 

𝑣 = (2𝑥3 + 2𝑥2)4 − 1 ≡ 𝑥3 + 𝑥 − 1 ≡ 𝑥3 + 𝑥 + 2 mod 3, 2𝑥4 + 2  

  

  To find the greatest common divisor of the following equation:  𝑥3 + 𝑥 + 2 and 

𝑓 

𝑔 = 𝐺𝐶𝐷( 𝑥3 + 𝑥 + 2 , 2𝑥4 + 2) = 𝑥2 + 2𝑥 + 2 

The sequence of remainders for the above greatest common divisor were         

  2𝑥4 + 2 mod 3, 𝑥3 + 𝑥 + 2 = 𝑥2 + 2𝑥 + 2 

𝑥3 + 𝑥 + 2 mod 3, 𝑥2 + 2𝑥 + 2 = 0 

There for the factor has been split and the second factor is 

2𝑥4 + 2

𝑥2 + 2𝑥 + 2
= 2𝑥2 + 2𝑥 + 1 

 

Applying the algorithm again to each of these factors returns the same result as they are 

irreducible. Therefore the factorization of 𝑓 is  

𝑓 = 2x4+2 = (x2+2x+2) (2x2+2x+1) mod 3 

And the complete factorization is 

𝑠 =  𝑥5 + 2𝑥4 + 𝑥 + 2 = (2𝑥 + 1)(2𝑥4 + 2) = (2𝑥 + 1)(𝑥2 + 2𝑥 + 2)(2𝑥2 + 2𝑥 +

1) mod 3 

Make the leading coefficients monic by multiplying the factors without monic 

coefficients by the invrse of their leading coefficient, in this case two for both factors 

 𝑠 =  𝑥5 + 2𝑥4 + 𝑥 + 2 = (𝑥 + 2)(𝑥2 + 2𝑥 + 2)(𝑥2 + 𝑥 + 2)mod 3. 
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