Perbandingan Metode Single Moving Average dan Metode Single Exponential Smoothing dalam Peramalan Indeks Pembangunan Manusia di Kabupaten Sumenep

Authors

  • Amaliyatul Hasanah Universitas Annuqayah
  • Prasanti Mia Purnama Universitas Annuqayah
  • Istianah Alifia Universitas Annuqayah

DOI:

https://doi.org/10.61132/arjuna.v2i1.661

Keywords:

human development index, fluctuation, forecasting, single moving average, single exponential smoothing

Abstract

The Human Development Index (HDI) can be defined as a comparative measurement of life expectancy, education, and living standards. HDI can fluctuate, among other things, because it is influenced by external factors, such as the COVID-19 pandemic. One of the districts that was affected in such a way that caused the HDI to decline was Sumenep district. In relation to HDI fluctuations, the single moving average and single exponential smoothing forecasting methods were implemented in this research to predict the HDI in Sumenep district in 2024. Next, the results obtained from the two methods were compared. In HDI forecasting using the single moving average method, the forecast value was 68.81 with an MSE value of 1.87, MAPE 1.379%, MAD 0.886 and MSD 0.824. Meanwhile, forecasting using the single exponential smoothing method produces a forecasting value of 68.93 with α=1.895) and a MAPE value of 0.739%, MAD 0.464 and MSD 0.272.

Downloads

Download data is not yet available.

References

Direktorat Analisis dan Pengembangan Statistik, (2015), Statistik Indonesia, Jakarta.

Badan Pusat Statistik, (2023), Statistik Indonesia, Sumenep.

Box, G.E.P. 1976. Jenkins, G.M. Time series Analysis Forecasting and Control Revised Edition. Oakland: Holden-Day, Inc.

Cryer, J. D. 1986. Time Series Analysis. Boston: PWSKENT Publishing Company

Makridakis, S., Wheelwright, S.C., & McGee, V.E. 1992. Metode dan Aplikasi Peramalan. Jakarta: Erlangga. Rao, S. S. 1984. Optimization Theory and Applications. Second Edition. USA: Dept. of Mechanical Engg. San Diego State University.

Zhang, G. P. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing, 50, (2003) 159-175.

Dita RK, Suci PL dan Barin B. (2022). Perbandingan Metode Exponential Smoothing dan Moving Average dalam Peramalan Retribusi Pengujian Kendaraan Bermotor di Dinas Perhubungan Kota Blitar. Jurnal Sains Dasar Vol. 11, No. 1, hal 35-38

Asyifaa N, Widodo B, Eti K dan Didi S. (2022). Penerapan Metode Moving Average untuk Prediksi Indeks Harga Konsumen. Jurnal Matematika, Vol. 21, No. 1, hal 19-25

Dita RK, Suci PL dan Barin B. (2022). Penerapan Metode Peramalan Moving Average dan Exponential Smoothing untuk Menyusun Perencanaan Produksi (Survei pada UMKM pembuatan Bordir dan Pakaian, Nining Collection di Ciamis). ULUL ALBAB: Jurnal Ilmiah Multidisiplin Vol. 1, No. 10, hal 3609-3622

Badan Pusat Statistik, (2015), Statistik Indonesia, Sumenep.

Badan Pusat Statistik, (2018), Statistik Indonesia, Sumenep.

Downloads

Published

2024-02-07

How to Cite

Amaliyatul Hasanah, Prasanti Mia Purnama, & Istianah Alifia. (2024). Perbandingan Metode Single Moving Average dan Metode Single Exponential Smoothing dalam Peramalan Indeks Pembangunan Manusia di Kabupaten Sumenep. Jurnal Arjuna : Publikasi Ilmu Pendidikan, Bahasa Dan Matematika, 2(1), 140–151. https://doi.org/10.61132/arjuna.v2i1.661

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.