Penerapan Python dalam Perhitungan Turunan Fungsi Dua Peubah dan Visualisasi Grafik 3D
DOI:
https://doi.org/10.61132/arjuna.v3i1.1419Keywords:
Derivation, Visualization, Multivariate, OptimizationAbstract
This study aims to analyze the derivatives of a two-variable function and visualize the results in the form of a 3D graph using Python. Derivatives of two-variable functions are essential in multivariate analysis, such as optimization and surface analysis. The study uses Visual Studio Code as the Integrated Development Environment (IDE) to develop and run Python code, utilizing libraries such as NumPy, SymPy, and Matplotlib for mathematical computations and visualization. The first step involves programming partial derivatives of a two-variable function using SymPy. Subsequently, the derivative results are visualized in 3D using Matplotlib to illustrate the surface and gradient of the function. The goal of this research is to provide a deeper understanding of the application of derivatives in two-variable functions and the benefits of visualization in analyzing these derivative results. The findings are expected to contribute to the fields of mathematics education and numerical computation applications.
Downloads
References
Anton, H., & Rorres, C. (2014). Elementary linear algebra (11th ed.). John Wiley & Sons.
Boulton, M., & Harrison, M. (2019). Integrating visualization tools in multivariable calculus education. Journal of Computational Science Education, 10(1), 23–34.
Epps, J. (2019). An exploration of mathematical functions using Python and Matplotlib. Computational Mathematics and Engineering, 14(4), 102–110.
Hunter, J. D. (2020). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 22(3), 30–39.
Moore, S., & Schmidt, J. (2021). Python in education: Visualizing calculus concepts with matplotlib. International Journal of Mathematical Education in Science and Technology, 52(3), 291–303.
Nocedal, J., & Wright, S. J. (2020). Numerical optimization (3rd ed.). Springer.
Nurdiyanto, M., & Syafrudin, M. (2020). Pengembangan perangkat pembelajaran kalkulus multivariabel berbasis software Python di perguruan tinggi. Jurnal Pendidikan Matematika, 11(2), 122–135.
Pratama, D., & Nugroho, F. (2021). Pemanfaatan Matplotlib untuk visualisasi turunan parsial dalam pembelajaran kalkulus. Jurnal Ilmu Matematika dan Pendidikan, 6(1), 50–62.
Schoenfeld, A. H. (2021). How we think: A theory of goal-oriented decision making and its educational applications. Routledge.
Setiawan, F., & Wibowo, R. (2021). Penggunaan Python untuk visualisasi konsep kalkulus multivariat pada pembelajaran matematika. Jurnal Pendidikan Teknologi dan Kejuruan, 18(3), 255–267.
Stewart, J. (2020). Calculus: Early transcendentals (9th ed.). Cengage Learning.
Strang, G. (2020). Introduction to linear algebra (5th ed.). Wellesley-Cambridge Press.
Thomas, G. B., & Finney, R. L. (2019). Calculus and analytic geometry (10th ed.). Pearson.
Van Rossum, G., & Drake, F. L. (2021). Python 3 reference manual (3rd ed.). CreateSpace.
Wang, X., & Chen, J. (2020). A study on the efficiency of using Python for teaching multivariable calculus. Journal of Computing and Mathematics, 12(2), 47–58.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Arjuna : Publikasi Ilmu Pendidikan, Bahasa dan Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.