Penyelesaian Numerik Model Pemangsa-Mangsa dengan Metode Jaringan Fungsi Radial Basis Menggunakan Trigonometric Shape Parameter

Authors

  • Muhammad Thahiruddin Institut Sains dan Teknologi Annuqayah
  • Mohammad Jamhuri Universitas Islam Negeri Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.61132/arjuna.v1i4.135

Keywords:

numerical solution, predator-prey model, radial basis function network

Abstract

One mathematical model in the form of a system of nonlinear ordinary differential equations is the predator-prey model. The predator-prey model explains population changes of one prey population and one predator population due to changes in time. The radial basis function network method is used to find a numerical solution to the predator-prey model. The radial basis function network method can directly approximate the function and derivative of the prey-prey model using a basis function. The basis function used is a multiquadric basis function. Numerical solutions using the radial basis function network method obtained from this research show high accuracy and low error. The absolute error obtained from the two simulations with Δt = 0.01 each is 0.0066 in the first simulation and 0.022 in the second simulation. The errors obtained are relatively small because each only represents 0.66% of the initial value of the first type and 0.5% of the initial value of the second type. This shows that the radial basis function network method is efficient in calculating the predator-prey model solution.

Downloads

Download data is not yet available.

References

Boyce, W. E., & DiPrima, R. C. (2012). Elementary Differential Equation (10th ed.). New York: John Wiley & Sons, Inc.

May-Dui, N., & Tran-Cong, T. (2001). Numerical solution of differential equations using multiquadric radial basis function networks. Neural Networks, 14(2), 185-199. doi:10.1016/S0893-6080(00)00095-2

May-Dui, N., & Tran-Cong, T. (2003). Approximation of Function and Its Derivatives Using Radial Basis Function Networks. Applied Mathematical Modelling, 27(3), 197-220. doi:10.1016/S0307-904X(02)00101-4

Paul, S., Mondal, S. P., & Bhattacharya, P. (2016). Numerical Solution of Lotka Volterra Prey Predator Model by using Runge–Kutta–Fehlberg Method and Laplace Adomian Decomposition Method. Alexandria Engineering Journal, 55(1), 613-617. doi:10.1016/j.aej.2015.12.026

Sarra, S. A., & Kansa, E. J. (2009). Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations.

Xiang, S., Wang, K.-m., Ai, Y.-t., Sha, Y.-d., & Shi, H. (2012). Trigonometric Variable Shape Parameter and Exponent Strategy for Generalized Multiquadric Radial Basis Function Approximation. Applied Mathematical Modelling, 32(5), 1931-1938. doi:10.1016/j.apm.2011.07.076

Downloads

Published

2023-09-01

How to Cite

Muhammad Thahiruddin, & Mohammad Jamhuri. (2023). Penyelesaian Numerik Model Pemangsa-Mangsa dengan Metode Jaringan Fungsi Radial Basis Menggunakan Trigonometric Shape Parameter. Jurnal Arjuna : Publikasi Ilmu Pendidikan, Bahasa Dan Matematika, 1(4), 248–263. https://doi.org/10.61132/arjuna.v1i4.135

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.